Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids.
نویسندگان
چکیده
The influence of poly(ethylene glycol)-lipid conjugates on phospholipid polymorphism has been examined using 31P-NMR and freeze--fracture electron microscopy. An equimolar mixture of dioleoylphosphatidylethanolamine (DOPE) and cholesterol adopts the hexagonal (HII) phase when hydrated under physiological conditions but can be stabilized in a bilayer conformation when a variety of PEG-lipid conjugates are included in the lipid mixture. These PEG conjugates produced an increase in the bilayer to hexagonal (HII) phase transition temperature and a broadening of the temperature range over which both phases coexisted. Further, the fraction of phospholipid adopting the bilayer phase increased with increasing mole fraction of PEG-lipid such that at 20 mole % DOPE--PEG2000 no HII phase phospholipid was observed up to a least 60 degrees C. Increasing the size of the PEG moiety from 2000 to 5000 Da (while maintaining the PEG--lipid molar ratio constant) increased the proportion of lipid in the bilayer phase. In contrast, varying the acyl chains of the PE anchor had no effect on polymorphic behavior. PEG--lipid conjugates in which ceramide provides the hydrophobic anchor also promoted bilayer formation in DOPE:cholesterol mixtures but at somewhat higher molar ratios compared to the corresponding PEG--PE species. The slightly greater effectiveness of the PE conjugates may result from the fact that these derivatives also possess a net negative charge. Phosphorus NMR spectroscopy indicated that a proportion of the phospholipid in DOPE:cholesterol:PEG--PE mixtures experienced isotropic motional averaging with this proportion being sensitive to both temperature and PEG molecular weight. Surprisingly, little if any isotropic signal was observed when PEG--ceramide was used in place of PEG--PE. Consistent with the 31P-NMR spectra, freeze-fracture electron microscopy showed the presence of small vesicles (diameter <200 nm) and lipidic particles in DOPE:cholesterol mixtures containing PEG--PE. We conclude that the effects of PEG--lipid conjugates on DOPE:cholesterol mixtures are 2-fold. First, the complementary "inverted cone" shape of the conjugate helps to accommodate the "cone-shaped" lipids, DOPE and cholesterol, in the bilayer phase. Second, the steric hindrance caused by the PEG group inhibits close apposition of bilayers, which is a prerequisite for the bilayer to HII phase transition.
منابع مشابه
Molecular and mesoscopic properties of hydrophilic polymer-grafted phospholipids mixed with phosphatidylcholine in aqueous dispersion: interaction of dipalmitoyl N-poly(ethylene glycol)phosphatidylethanolamine with dipalmitoylphosphatidylcholine studied by spectrophotometry and spin-label electron spin resonance.
Spin-label electron spin resonance (ESR) spectroscopy, together with optical density measurements, has been used to investigate, at both the molecular and supramolecular levels, the interactions of N-poly(ethylene glycol)-phosphatidylethanolamines (PEG-PE) with phosphatidylcholine (PC) in aqueous dispersions. PEG-PEs are micelle-forming hydrophilic polymer-grafted lipids that are used extensive...
متن کاملFluorescent-labeled poly(ethylene glycol) lipid conjugates with distal cationic headgroups.
The synthesis of a new class of fluorescent cationic poly(ethylene glycol) lipid conjugates (CPLs) is described. These lipids consist of a hydrophobic distearoyl-phosphatidylethanolamine (DSPE) anchor coupled to a highly fluorescent N(epsilon)-dansyl lysine moiety, which is attached to a hydrophilic poly(ethylene glycol) (PEG) spacer that is linked to a cationic headgroup made of lysine residue...
متن کاملSingle molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.
The measurement of single poly(ethylene glycol) (PEG) molecules interacting with individual bilayer lipid membrane-bound ion channels is presented. Measurements were performed within a polymer microfluidic system including an open-well bilayer lipid membrane formation site, integrated Ag/AgCl reference electrodes for on-chip electrical measurements, and multiple microchannels for independent io...
متن کاملSpontaneous liposome formation induced by grafted poly(ethylene oxide) layers: theoretical prediction and experimental verification.
Spontaneous liposome formation is predicted in binary mixtures of fluid phase phospholipids and poly(n)ethylene oxide (PEO)-bearing lipids by using single chain mean field theory. The range of stability of the spontaneous liposomes is determined as a function of percentage of PEO-conjugated lipids and polymer molecular weight. These predictions were tested by using cast films of 1, 2-diacyl-sn-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 35 8 شماره
صفحات -
تاریخ انتشار 1996